Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells.

نویسندگان

  • Jung Bok Lee
  • Tamra E Werbowetski-Ogilvie
  • Jong-Hee Lee
  • Brendan A S McIntyre
  • Angelique Schnerch
  • Seok-Ho Hong
  • In-Hyun Park
  • George Q Daley
  • Irwin D Bernstein
  • Mickie Bhatia
چکیده

Notch signaling regulates several cellular processes including cell fate decisions and proliferation in both invertebrates and mice. However, comparatively less is known about the role of Notch during early human development. Here, we examined the function of Notch signaling during hematopoietic lineage specification from human pluripotent stem cells of both embryonic and adult fibroblast origin. Using immobilized Notch ligands and small interfering RNA to Notch receptors we have demonstrated that Notch1, but not Notch2, activation induced hairy and enhancer of split 1 (HES1) expression and generation of committed hematopoietic progenitors. Using gain- and loss-of-function approaches, this was shown to be attributed to Notch-signaling regulation through HES1, which dictated cell fate decisions from bipotent precursors either to the endothelial or hematopoietic lineages at the clonal level. Our study reveals a previously unappreciated role for the Notch pathway during early human hematopoiesis, whereby Notch signaling via HES1 represents a toggle switch of hematopoietic vs endothelial fate specification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development

The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signal...

متن کامل

Hes1 regulates embryonic stem cell differentiation by suppressing Notch signaling

Embryonic stem (ES) cells display heterogeneous responses upon induction of differentiation. Recent analysis has shown that Hes1 expression oscillates with a period of about 3-5 h in mouse ES cells and that this oscillating expression contributes to the heterogeneous responses: Hes1-high ES cells are prone to the mesodermal fate, while Hes1-low ES cells are prone to the neural fate. These outco...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

Hes1 Oscillations Contribute to Heterogeneous Differentiation Responses in Embryonic Stem Cells

Embryonic stem (ES) cells can differentiate into multiple types of cells belonging to all three germ layers. Although ES cells are clonally established, they display heterogeneous responses upon the induction of differentiation, resulting in a mixture of various types of differentiated cells. Our recent reports have shown that Hes1 regulates the fate choice of ES cells by repressing Notch signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 122 7  شماره 

صفحات  -

تاریخ انتشار 2013